5/23/2017

ASN.1 key structures in DER and PEM - Knowledge Base - mbed TLS (Previously PolarSSL)

PolarSSL is now part of ARM Official announcement and rebranded as mbed TLS.

ARMmbed

Home

About us Dev corner Security Support Get Account

Knowledge Base > Cryptography > ASN.1 key structures in DER and PEM

ASN.1 key structures in DER and PEM

Register or

Contact

Search the Knowledge Base

Introduction

Everybody loves PEM and the very documented ASN.1 structures that are used in saving
cryptographic keys and certificates in a portable format. Well.. Everybody would if they would
actually be documented. But it is rather a big feat to find what the structure is inside each DER or
PEM formatted file.

As we need this information, we will share it here as well, to help others in their quest for knowledge

and understanding ;)

ASN.1 and DER encoding

Within the RSA, PKCS#1 and SSL/TLS communities the Distinguished Encoding Rules (DER)
encoding of ASN.1 is used to represent keys, certificates and such in a portable format. Although
ASN.1 is not the easiest to understand representation formats and brings a lot of complexity, it does
have its merits. The certificate or key information is stored in the binary DER for ASN.1 and
applications providing RSA, SSL and TLS should handle DER encoding to read in the information.

PEM files
Because DER encoding results in a truly binary representation of the encoded data, a format has
been devised for being able to send these in an encoding of printable characters so you can

actually mail these things. The format | focus on now is the PEM format.

Most PEM formatted files we will see are generated by OpenSSL when generating or exporting an
RSA private or public key and X509 certificates.

In essence PEM files are just base64 encoded versions of the DER encoded data. In order to

distinguish from the outside what kind of data is inside the DER encoded string, a header and footer

are present around the data. An example of a PEM encoded file is:

MIGFMAQGCSqGSIb3DQEBAQUAA4GNADCB1QKBgQDMY FnvivtC8TdSbPKaeSyXSxQTt
+Zpul6AnnZWfI2TtIarvjHBFUtXR0o96y7holL4VWOPKGCsRgMFDkrbeUjRrx8iL91
4/srnyf6sh9c8Zk@4xEOpK1lypvBz+Ks4uZObtjnnitfONBGdjMKxveTq+VE7BWUI
yQ3jtQ8mbDOsiLLvh7wIDAQAB

The first and last line indicate the DER format that should be expected inside. The data inside is a

base64 encoded version of the DER encoded information.

Formats
So that's all nice and well. But what IS the structure you should expect in each different file? Look

below for explanation of different formats.

RSA Public Key file (PKCS#1)
The RSA Public key PEM file is specific for RSA keys.

It starts and ends with the tags:

https://tls.mbed.org/kb/cryptography/asn1-key-structures-in-der-and-pem

Search |

Section:
Cryptography

Author:
Paul Bakker

Published:
Oct 14, 2012

Last updated:
Apr 14,2014

Sharing:
(64|

Related articles:

» What external
dependencies does
mbed TLS rely on?

» How to generate a
Certificate Request
(CSR)

» How to generate a self-
signed certificate

» How to encrypt and
decrypt with RSA

e

Migrating from
PolarSSL-1.2 to the
PolarSSL 1.3 branch
RSA Key Pair
generator

¥ Thread Safety and
Multi Threading:

concurrency issues

e

¥ Using an external RSA

private key

-

Migrating from mbed

TLS 1.3 to mbed TLS
2.0

* How are error codes

defined

Log in to mbed TLS

1/3

http://www.arm.com/
http://www.arm.com/about/newsroom/arm-buys-leading-iot-security-company-offspark-as-it-expands-its-mbed-platform.php
http://community.arm.com/groups/internet-of-things/blog/2015/02/09/polarssl-is-dead-long-live-mbed-tls
https://tls.mbed.org/register
https://tls.mbed.org/login?return_page=%2Fkb%2Fcryptography%2Fasn1-key-structures-in-der-and-pem
https://tls.mbed.org/
https://tls.mbed.org/kb
https://tls.mbed.org/kb/cryptography
http://en.wikipedia.org/wiki/Distinguished_Encoding_Rules
http://en.wikipedia.org/wiki/ASN.1
http://www.openssl.org/
http://www.facebook.com/sharer.php?u=https%3A%2F%2Ftls.mbed.org%2Fkb%2Fcryptography%2Fasn1-key-structures-in-der-and-pem
http://twitter.com/share?url=https%3A%2F%2Ftls.mbed.org%2Fkb%2Fcryptography%2Fasn1-key-structures-in-der-and-pem&text=ASN.1+key+structures+in+DER+and+PEM+%28%40ARMmbed%29%3A
https://plus.google.com/share?url=https%3A%2F%2Ftls.mbed.org%2Fkb%2Fcryptography%2Fasn1-key-structures-in-der-and-pem
http://www.reddit.com/submit?url=https%3A%2F%2Ftls.mbed.org%2Fkb%2Fcryptography%2Fasn1-key-structures-in-der-and-pem&title=ASN.1+key+structures+in+DER+and+PEM
https://news.ycombinator.com/submitlink?u=https%3A%2F%2Ftls.mbed.org%2Fkb%2Fcryptography%2Fasn1-key-structures-in-der-and-pem&t=ASN.1+key+structures+in+DER+and+PEM
https://tls.mbed.org/kb/development/what-external-dependencies-does-mbedtls-rely-on
https://tls.mbed.org/kb/how-to/generate-a-certificate-request-csr
https://tls.mbed.org/kb/how-to/generate-a-self-signed-certificate
https://tls.mbed.org/kb/how-to/encrypt-and-decrypt-with-rsa
https://tls.mbed.org/kb/how-to/migrate-from-polarssl-1.2-to-polarssl-1.3
https://tls.mbed.org/kb/cryptography/rsa-key-pair-generator
https://tls.mbed.org/kb/development/thread-safety-and-multi-threading
https://tls.mbed.org/kb/cryptography/use-external-rsa-private-key
https://tls.mbed.org/kb/how-to/upgrade-2.0
https://tls.mbed.org/kb/development/how-are-error-codes-defined
https://tls.mbed.org/
https://tls.mbed.org/download
https://tls.mbed.org/account
https://tls.mbed.org/contact
https://tls.mbed.org/about-us
https://tls.mbed.org/dev-corner
https://tls.mbed.org/security
https://tls.mbed.org/support

5/23/2017 ASN.1 key structures in DER and PEM - Knowledge Base - mbed TLS (Previously PolarSSL)

Within the base64 encoded data the following DER structure is present:

RSAPublicKey ::= SEQUENCE {
modulus INTEGER, --n
publicExponent INTEGER -- e

Public Key file (PKCS#8)
Because RSA is not used exclusively inside X509 and SSL/TLS, a more generic key format is

available in the form of PKCS#8, that identifies the type of public key and contains the relevant data.

It starts and ends with the tags:

Within the base64 encoded data the following DER structure is present:

PublicKeyInfo ::= SEQUENCE {

algorithm AlgorithmIdentifier,

PublicKey BIT STRING
}
AlgorithmIdentifier ::= SEQUENCE {

algorithm OBJECT IDENTIFIER,

parameters ANY DEFINED BY algorithm OPTIONAL
3

So for an RSA public key, the OID is 1.2.840.113549.1.1.1 and there is a RSAPublicKey as the
PublicKey key data bitstring.

RSA Private Key file (PKCS#1)
The RSA private key PEM file is specific for RSA keys.

It starts and ends with the tags:

Within the base64 encoded data the following DER structure is present:

RSAPrivateKey ::= SEQUENCE {

version Version,

modulus INTEGER, --n

publicExponent INTEGER, -- e

privateExponent INTEGER, --d

primel INTEGER, --p

prime2 INTEGER, -- g

exponentl INTEGER, -- d mod (p-1)

exponent2 INTEGER, -- d mod (g-1)

coefficient INTEGER, -- (inverse of g) mod p

otherPrimeInfos OtherPrimeInfos OPTIONAL
}

Private Key file (PKCS#8)

Because RSA is not used exclusively inside X509 and SSL/TLS, a more generic key format is
available in the form of PKCS#8, that identifies the type of private key and contains the relevant
data.

https://tls.mbed.org/kb/cryptography/asn1-key-structures-in-der-and-pem 2/3

5/23/2017 ASN.1 key structures in DER and PEM - Knowledge Base - mbed TLS (Previously PolarSSL)

The unencrypted PKCS#8 encoded data starts and ends with the tags:

Within the base64 encoded data the following DER structure is present:

PrivateKeyInfo ::= SEQUENCE {
version Version,
algorithm AlgorithmIdentifier,
PrivateKey BIT STRING
3
AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL
3

So for an RSA private key, the OID is 1.2.840.113549.1.1.1 and there is a RSAPrivateKey as the

PrivateKey key data bitstring.

The encrypted PKCS#8 encoded data start and ends with the tags:

Within the base64 encoded data the following DER structure is present:
EncryptedPrivateKeyInfo ::= SEQUENCE {
encryptionAlgorithm EncryptionAlgorithmIdentifier,
encryptedData EncryptedData

EncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

EncryptedData ::= OCTET STRING

The EncryptedData OCTET STRING is a PKCS#8 PrivateKeylInfo (see above).

Did this help?
| G+

Let's be friends! Privacy Policy

https://tls.mbed.org/kb/cryptography/asn1-key-structures-in-der-and-pem

Copyright © 2008 - 2016 ARM Limited
All Rights Reserved

3/3

https://twitter.com/ARMmbed
https://www.linkedin.com/company/arm/
https://tls.mbed.org/privacy-policy

